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Optical activity in an isotropic gas of electrons with a preferred helicity
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An isotropic gas of electrons with a preferred spin helicity is shown to be optically active. Simultaneous
eigenfunctions of the Dirac Hamiltonian and the helicity operator are constructed and used to derive explicit
expressions for vertex functions for helicity states. T¢tmvarianj response tensor is calculated for an electron
gas described in terms of a spin-dependent occupation number. The possibility of detecting optical activity in
an electron gas is discussed briefly.
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[. INTRODUCTION number for the spin state==*=1. The spin dependence is
included here by writing the general expression for the re-
The responséto an electromagnetic disturbancef an  sponse tensor in terms of spin-dependent vertex functions,
isotropic classical electron gas can be decomposed into |o@nalogous to those used to treat QED processes in a magne-
gitudinal and transverse parts, and these determine the diized plasmd6,7]. . ' '
persive properties of |0ngitudina| and transverse wave In Sec. Il a-COVa”an.t form fOf the |Ineal’ response tensor is
modes, respectively. The most general response for an isgl€composed into longitudinal, transverse, and rotatory parts.
tropic medium includes a third “rotatory” componefi] The response tensor for an arbitrary, spin-dependent electron
which is nonzero for optically active media, such as a solud@s iS then written down and is separated into non-spin-
tion of dextrose. The rotatory component removes the deger‘g-.ependent and sp'm-dependent parts. In Seq. I”. the helicity
eracy in the two transverse modes, such that two oppositel igenstates are written down, the vertex function is evaluated
circularly polarized modes have different refractive indices. or the helicity states, and the s_p_ln-dependent part of the
: o . response tensor is evaluated explicitly and shown to be of the
Optical activity requires that the system have a preferred

handed it has b inted out that tat rotatory form identified in Sec. Il. In Sec. IV the possibility
andeaness. as been pointed out that a rotatory compay detecting optical activity in an electron gas is discussed.
nent exists in a theory based on a Lagrangian Withand

. Natural units, withh=c=1 are used, except where stated

CP-odd terms[2], where the asymmetry in the preferred otherwise.
handedness is intrinsic. Here we point out that a rotatory
component exists in a simpler system: Electrons produced by
decay of neutrons have a preferred spin helicity, and hence a
preferred handedness. In this paper we calculate the response
tensor for a helicity-dependent isotropic electron gas and A covariant form for the linear response tenddf*(k)
show that it exhibits optical activity. relates the induced 4-current*=I1#"(k)A,(k) to the

The derivation of the response tensor given here is intrin4-potential of the disturbancé(k), wherek is the wave
sically relativistic, and this is important even for what might 4-vector. Charge continuity and gauge invariance require
otherwise be regarded as nonrelativistic electrons. The rea-
son is that a physically relevant spin operator must commute k, I1#"(k)=0, k,II*"(k)=0, (oh)
with the Hamiltonian, and a nonrelativistic treatment using
the Schrdinger-Pauli equation achieves this artificially by respectively.
neglecting spin-orbit coupling. For electrons in motion it is
necessary to choose a spin operator that commutes with the separation into longitudinal, transverse, and rotatory parts
Dirac Hamiltonian, and a helicity operator exists that satis- ) ) ) ) ) )
fies this criterion3,4]. The electron states used in the deri- For an isotropic medium, with) being the 4-velocity of
vation here are simultaneous eigenfunctions of the Dira¢he rest frame of the medium, the most general form of the
Hamiltonian and this helicity operator. response tensor e.g., Rg2] is

A conventional QED derivation of the response tensor for TT#(k) = I (k) LA*(k, U) + TTT(K) TA*(k, U)
a relativistic quantum electron gas is analogous to the calcu- ' '
lation for the vacuum polarization, with the electron propa- +IIR(k)R**(k,U), 2
gatorin vacuoreplaced by the statistically averaged propa-
gator in the electron gaf5]. This average involves the wherell-(k), I17(k), andIIR(k) are invariants that describe
occupation numbers“(p), for electrons €= +1) and pos-  the longitudinal, transverse, and rotatory responses, respec-
itrons (e=—1). This formalism involves taking a trace over tjvely. The longitudinal tensor can be expressed as the outer
a product of Dirac matrices, and it applies only to unpolar-product of a longitudinal 4-vectot,(k,U), with itself. One
ized electrons, in the sense te{(p) is to be interpreted as requireskL(k,U)=0 to ensure that Eq(1) is satisfied. A
né(p)=3[n<(p)+n<(p)], wherenS(p) is the occupation specific choice is

II. RESPONSE TENSOR FOR AN UNMAGNETIZED
ELECTRON GAS
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L#"(k,U)=—L*(k,U)L"(k,U), C. Separation into spin-independent and spin-dependent parts

A separation into spin-independent and spin-dependent
KU K+ — Kk2U* parts involves separating the occupation number into spin-

L#(k,U) (3  averaged and spin-specific terms, by writing

" KUT(KU)Z— K22

1
which corresponds to a normalization such that in the rest n(p)=5[n(p)+ni(p)],
frame, U=[1,0], one hasL(k,U)=[|k|/w,k/|k|]. The

transverse tensor 1
An<(p)=5[n5(P)=nZ(p)], ©)
. _ (kw2 § L KEK
Tk U)= Tz LAGUL (U T0" = == () 56 that one has
whereg#” is the metric tensofsignature— 1), is normalized > ng(p)[]";,sf(p’,p,k)]//-[l";:sf(p"p’k)]* v

such that in the rest frame it corresponds to the unit trans-  s's

verse second rank tensor. The rotatory tensor is defined by — "
=n(p)La® “(p".p.K)]+An(p)[Aa® “(p’,p,k)],

REY(k,u)=ie!"P7L ,(k)U,,, (5)
NS (PITS (P PR IT (P’ k)T
where the completely asymmetric tenset”?’ has 122 SES o (P os(PLPIOJAT (P, Pk0]
=1. One has e e b
=nc(p")[e® “(p’,p,k)]+ANnc (p’)
L (kU)4 ov <A’ TN k (10)
I (k) = Lo (k, U (K), [A"a “(p",p,K)],

in Eq. (7), with

1
HT k :_T k,U HUV k y ! e'e €€ '
(0= 2 Tl () (@ “(p" p k)T = 3 (TSP’ k) TS P k) T,

s,s’

1
R —_ = ov e, Y e

I17(k) = = 5 R, (K, W) IT7" (k). (6) [Aad&(p' k) ]# :2 S[TES(p',p.k)]#

S,S

B. Response tensor for an arbitrary electron gas X [F;:;(p' P K)T*7,
A derivation using QED8] leads to the following general
expression for the response tensor: [A’asls(p’ p k)]‘”=2 s’[l“élé(p’ p.k) ]
q/q ) i) / S/s H 1

d3p d3pr s

(2m?3) (2m)®

#"(k)=—e? SZ } f (2m)* X[TSSp pk)T*Y. (1)
ens(p)— e,nf/'(p,) The linear response tensor in E@) then separates into a
X 53(€'p' — ep+k) s s spin-independent paft/;” and a spin-dependent pdit:; ,
w—est+e' e’ +i0 with TT#7(k) =T1#"(k) + 114y (k). For the spin-independent
, , part, the sum over spins may be carried out by standard
X[Tge(p' P K)IXTgs(p",pK)T*",  (7)  techniques without introducing any spin operator. One has

with e =(m?+p?) 2 &' =(m?+p’?)Y2 The electron gas is — , Fr(ep,e'p’)

described as a statistical distribution of electroas () and 2 [a®“(p".p.K)]" T s’ (12
positrons €= —) having occupation numbensg(p), with 2

s==*1 being the spin eigenvalue. The vertex functions in 1

Eq. (7) are defined as F**(P,P")= ZTr[y“(P+ m)y"(P'+m)]

US(€'p) y#uS(ep) o = PP’V PIEPY ghY (M- PP'), (13)
V2e'\2e p=[e,p], p’'=[¢’,p’]. The resulting spin-independent part

of the response tensor can be rewritten in a variety of known
wherey* are the Dirac matrices and(ep) are the electron forms for an unpolarized electron gas. A form that follows
eigenfunctions. directly from Eq.(12) is

[TS5(p ,pk) 4=
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d*p < np)

(2m®%e &

F*"(ep,ep—k)
k?—2epk

147 (k) = 2€? f
FrY(ep+K,
L Feptkiep)| (14)
k?+2epk

Apart from minor differences in notation, foriii4) is that
written down by Ref.[9]. The spin-dependent part of the
response tensor is

d°p eAn<(p)
(2m)° w—ec+e€'e’ +i0

147 (k)= —e22 f

d3p/
(2m)°

*[aa @ p eS|

e’Anf'(p’)

w—eet+e' e +i0

[A"a<(p".p.k)]".
(15)

The functiong A€ €]#*, and[A’ a€ €]** depend explicitly
on the choice of spin operator.
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IIl. RESPONSE OF A HELICITY-DEPENDENT
ELECTRON GAS

The tensorizf'f]’”, [Aaf'f]‘”, and[A’aE'E]”V, intro-
duced in Eq.(11), are evaluated here in the case where the
spin operator is identified as the helicity.

A. Helicity eigenstates

An acceptable spin operator must commute with the Dirac
Hamiltonian[3,4,10, and the helicity operatas- p, satisfies
this criterion. The coordinate representation implips
=—idlox, and o denotes the Pauli matrices in the<4
Dirac spin space. Assuming a plane wave solutioexp
[—ie(et—p-Xx)], and the 3-momentum in cylindrical polar
coordinatesp=(p, cosg¢,p, sin¢,p,), the eigenvalues of the
helicity operator aresp with s=+ and p=|p|=(p2
+pf)1’2. A specific choice of eigenstates, for a convenient
choice of phase, is

JetemJp+espe 142

1 | seJe+emp—esp,e??

ug(ep)=\/?p sevs—em JpTespe ¥
Je—em Jp—esp,ei4?2

The vertex function8) for the helicity eigenstates becomes

(16)

[a\a, +3ala ][, B, (4 ¢Ry3p g elldm 4002

[a)a_+3a’ a ][BLB-e? ¥)2+3p B e 147407

[T5sp'.p))= | o o (17
s's 4(p'e'pe)t? —i[e,a_+3a a,] [B;B_el(¢+(/> V2_3 3" g, e 1(4+4))/2]
selala_+3a ][, B, e 0 N2-3p g 4N
|
ai:(siem)llzi Bt:(ptespz)llzl EZGIS, 681 b23_ wspx_kx|p|2 (19)
(18 a Ip|e ’

and similarlya’. = (s’ + e'm)¥2 and B8/, = (p’ + €'s'p,) *2

B. The response tensor for the helicity eigenstates

! !
The nonzero components pAa€ €]*” and[A' a€ €]*?,

cf. Eq.(11), give the helicity-dependent part of the response,

tensor:

_ d®p An<(p)
I4%(K) = — 2k2
W= | o

b**(k,p),

pOL kzpy|_|kypz 02— kxpz|_|ksz 03— kypx|_|kxpy
Pl Pl Pl
b12: wspz_ kZ|p|2 b13: ky|p|2_w8py
ple ple 7

with pk=we—p-k, k?=w?—|k|2.

C. Isotropic distribution

It follows directly from Eq.(19) that the spin-dependent
ontribution of an isotropic helicity-dependent electron gas is
rotatory. To see this, choode along thez axis (k,=0, k,
=0, k,=|k|) in the rest frame of the electron gas. Then in
the denominator of the integrand in EQ.9) one hasp-k
=p,|k|, so that the integrals over terms proportionapoor
py in b*” give zero. The only nonzero term in EQLY) is
thenb!?= —b?L, By inspection, the only nonzero component
of R*” for k along thez axis in the rest frame is the 12-
component, completing the proof.

The invariantd1I", I17, andIIR can each be reduced to a
single integral by performing the angular integrals in Eq.
(19). Various forms forlI- andII" are known, andIR can
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be written in a corresponding variety of forms. One form is E. Nonrelativistic limit

2 e AR The difference in the refractive indices between the left

TTR(K) = — € zf 0 n(p) [we(we—k2/2)—p?k[2] ~ @nd right hand polarized modes is determined B/ IT".
(2m)Jo " g|k|? Consider a nonrelativistic thermal distribution of electrons at
a temperatureT=m\V2. Assuming phase speeds much

we —k?/2+ p|K| [ ws(ws+K22)—p|k|2] greater than the thermal spees:V,, one has, in ordinary
we — k22— plK| units,

2 w? 0’ w?—|k|%c? 3hlk|V
wet k2t plk || 200 MTK=-—-2, MRk=a-—LZ K Ve
we + k22— p|K| Mo Mo |k[*c?  (2m)¥mc?

(25

. -, _ + —
with An(p)=An"+An". The refractive indices for the two modes, labeled are

D. Thermal (Juttner) distribution 2 2
_— . 2_,_ @ ., @ 3ho e
A nondegenerate relativistic thermal electron gas is de- ni=1-—3 1A~ 2mm ¢ |’ (26)
scribed by the Jtner distribution
m2npe 7 where the term proportional t is assumed small in making

n(p)= (21)  the approximations®— |k|?c?= w? to lowest order inA.

Ka(p)m®

wheren is the number densityy=m/T is the inverse tem- IV. DISCUSSION AND CONCLUSIONS

pergtlﬂr(/az in units of the rest energy of the particjes (1 The optical activity associated with a gas of electrons
—v?) "M is the Lorentz factor ant,(p) is a Macdonald  with a specific helicity is an intrinsically quantum mechani-
(modified Bessglfunction. In the nonquantum limitl= and ¢4 effect, and hence is intrinsically small. In principle, the
IT7 for a Jittner distribution may be written in terms of the effect is observable in terms of the rotation of the plane of

relativistic plasma dispersion functi¢al] polarization as radiation propagates through the electron gas.
Significant rotation requires propagation over a lerigthat
1 ePy satisfies|n, —n_|Lw/c=1. Using Eq.(26), this condition
T(zp)= j_ld” — (22) requiresh wyVel/w?mc*=1. In order of magnitude, this re-

quires @5/ w?)(Ve/c)(nL/10P’ m~?)=1, wheren is the
number density per cubic meter ahds in meters. A dense
Egasma, a long path length, and a frequency not too much
greater than the plasma frequency are needed for the effect to
be readily observable, and these are very difficult conditions
to satisfy. A severe constraint is that in a dense plasma, col-
Ol}sions depolarize the electrons on a collisional time scale,
seemingly precluding observation of the effect in the labora-
tory.

Another complication is that in the presence of even a
1 Z—v L
V.(z,p)= J' do 3" ep‘yln(_), (23) very weak magnetic fle_ld_, the Fara_lday effeqt can swamp the

0 z effect of the optical activity. The difference in refractive in-
dices due to the Faraday effe¢h, —n_| is of order

T(z,p) and functions derived from it may be expressed in@;wg/w®, wherewg=eB/m s the cyclotron frequency. The
terms of even combination¥(z,p) +V,(—z,p), whereas ratio of the cyclotron frequency to the plasma frequency
here odd combinations appear. Specificalli(k) may be  needs to satisfwg/w,=<(fw,/mc*)(V./c) for the Faraday
written in the form effect to be smaller than the effect of optical activity, and this
is an extremely difficult condition to satisfy. In principle, one
can separate the Faraday effect and optical activity by re-
p w . L .
—(1-2%) flecting the radiation after it has passed through the electron
4Ka(p) m gas once, so that it retraces its ray path back to its source.
2 The rotations of the plane of polarization along the direct and
X{—e P+Vj5(z,p)—V3(—2z,p);, (29 reflected ray paths has opposite signs for the Faraday effect
zp and the same sign for optical activity. Hence, the Faraday
L effect can be made to cancel while doubling the effect of
where A=An(p)/n(p) is the fractional excess of electrons optical activity. This suggests that the optical activity could
with positive helicity. be separated from the Faraday effect in an arrangement in-

and its derivative with respect ta=w/|k|. The general
guantum expressions for the longitudinal and transverse par
may also be written in terms of(z,p) [12]. However, the
rotatory part is an odd function af=p/ym and hence it
cannot be expressed in termsTfz,p) which relies on the
response being an even function. By introducing a class
functions

2
w

MR(k)= —A
Mo
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volving multiple reflections so that the ray traverses the same We conclude that although an electron gas favoring elec-
ray path many times. Nevertheless, the Faraday effect prdrons with a specific spin helicity exhibits optical activity in
vides another severe restriction on the possibility of observprinciple, it does not seem feasible to detect this effect using
ing the optical activity. familiar techniques.
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